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Neurodegenerative disorders exhibit considerable clinical heterogeneity
and are frequently misdiagnosed. This heterogeneity is often neglected and
difficult to study. Therefore, innovative data-driven approaches utilizing
substantial autopsy cohorts are needed to address this complexity and
improve diagnosis, prognosis and fundamental research. We present
clinical disease trajectories from 3,042 Netherlands Brain Bank donors,
encompassing 84 neuropsychiatric signs and symptoms identified through
natural language processing. This unique resource provides valuable new
insights into neurodegenerative disorder symptomatology. To illustrate,
we identified signs and symptoms that differed between frequently
misdiagnosed disorders. In addition, we performed predictive modeling
and identified clinical subtypes of various brain disorders, indicative of
neural substructures being differently affected. Finally, integrating clinical
diagnosis information revealed a substantial proportion of inaccurately
diagnosed donors that masquerade as another disorder. The unique
datasets allow researchers to study the clinical manifestation of signs and
symptoms across neurodegenerative disorders, and identify associated
molecular and cellular features.

Thebrainisahighly complex organthatis susceptible to awide range
of neurodegenerative disorders that canresultin dementia, including
Alzheimer’s disease (AD), subtypes of frontotemporal dementia (FTD),
Parkinson’s disease (PD), dementia with Lewy bodies (DLB), vascular
dementia (VD) and mixed forms of dementia. Theincidence of dementia
isexpectedtotriple by 2050 (ref.1) andis the seventh leading cause of
deathworldwide with tremendous economicimpact. Importantly, the
number of treatment options for these disordersis still very limited and

more fundamental research is crucial®. Most dementias are difficult
to diagnose and study due to considerable heterogeneity®™, partially
shared clinical and pathological features®” and complex comorbidity
patterns®’. The relationship between neuropathological diagnosis (ND)
and clinical manifestation is complex, with partially overlapping signs
and symptoms manifesting in various disorders. This frequently results
indiscrepancies between clinical and postmortem ND, with up to a third
of cases with a specific dementia being clinically misdiagnosed'*".
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However, the frequency and the temporal profiles of these signs and
symptoms generally tend to differ. Hence, it is crucially important to
establish new global approaches that aim to systematically obtain and
harmonize clinical and neuropathological information.

Brain banks that disseminate postmortem brain tissues have
fueled worldwide research into neurodegenerative diseases and,
together with molecular biology and biochemical assays, genomics
technologies and microscopic imaging, have given unprecedented
insight into underlying pathophysiological mechanisms. However,
a major limitation of current postmortem dementia studies is that
most brain banks collect and supply very limited clinical information,
hampering the ability toinclude key clinical parametersin the statisti-
cal designs of postmortem studies. Many brain studies continue to use
abinary case-control design, overlooking the phenotypic diversity
among cases and controls. Although there have been attempts to
integrate clinical diagnosis (CD), clinical symptoms or temporal
profiling, to the best of our knowledge, these approaches have not
been comprehensively combined. To address this issue, we aimed
to delineate clinical disease trajectories across neuropathologically
defined brain disorders by mining the medical record summaries from
donors ofthe Netherlands Brain Bank (NBB).

The NBB s anonprofit organization that currently has performed
over 5,000 human brain autopsies™ and is renowned for brain tissue
withshort postmortem delay and extensive medical record summaries.
This makes the NBB a highly valuable resource that has facilitated
neuroscientific research globally. However, these unstructured medi-
calrecord summaries had not yet been converted into astandardized
format necessary for scientific purposes. To convert these medical
record summaries into clinical disease trajectories, we developed a
computational pipeline consisting of parsers and natural language
processing (NLP) techniques. These clinical disease trajectories can
beusedto facilitate fundamental research questions, such as theiden-
tification of clinical subtypes and the investigation of heterogeneity
within disorders, and could contribute toward a more individualized
medicine approach.

By integrating these clinical disease trajectories with the neuro-
pathologically defined diagnosis, we were able to perform temporal
profilingand survival analysis of various brain disorders. We also com-
pared the accuracy of the CDs with that of the NDs assigned by the
neuropathologist, seen as the ground truth. Finally, we illustrate how
this dataset canbe used for the predictive modeling of brain disorders
and theidentification of new data-driven clinical subtypes of disease,
including subtypes of dementia, subtypes of early and late PD and
subtypes of multiple sclerosis (MS).

Results
Identification of neuropsychiatric signs and symptoms and
exploration of the labeled data
We have established a computational pipeline that consists of text
parsersand NLP models to convert the extensive medical record sum-
mariesinto clinical disease trajectories (Fig. 1a). This pipeline consists
ofthree steps, with the first parsing NBB donor files, the second defining
and predicting attributes inthe clinical history (Extended Data Table 1)
and converting the predicted signs and symptoms into clinical disease
trajectories, and the third using the trajectories for downstream analy-
ses. In total, we included 3,042 donor files from donors with various
NDs (Extended DataFig.1a, Table1and Supplementary Tables1and 2).
First, we defined a new crossdisorder clinical categorization sys-
tem that contains 90 neuropsychiatric signs and symptoms, associated
with braindisorders and overall wellbeing/functioning, across 5 broad
domains (Fig. 1b). From a random set of 293 donors, 18,917 sentences
were scored by 1scorer to create a dataset to refine, validate and test
different NLP models (Supplementary Table 3). To determine the reli-
ability of the scoring process, 1,000 sentences were randomly selected
and scored independently by another scorer. The interannotator

agreement was high, corroborating the reliability of our gold standard
(Cohen’s k= 0.86). Next, we performed an enrichment analysis to deter-
mine whether the labeled signs and symptoms were more frequently
observed in each disorder than expected by random chance. This
analysisidentified many expected disease-specific signs and symptoms
suchas ‘dementia’ being significantly enrichedin AD, PDD, DLBand VD
butnotin PD without dementia and ‘bradykinesia’in PD, PDD, MSA and
PSP, disorders that are known to exhibit extrapyramidal symptoms
(Extended Data Fig. 1b). These observed neuropsychiatric signs and
symptoms were significantly overrepresented for a priori defined
signs and symptoms of diagnosticimportance (y*=171.28, P=1x107).

Refining NLP models and constructing clinical disease
trajectories

Toreliably identify neuropsychiatric signs and symptomsinindividual
sentences, we established a pipeline to refine and compare different
NLP model architectures (Extended Data Fig.2a). The datawere divided
into atraining and a hold-out test set, stratified according to a rela-
tively equal distribution of sign and symptom observations. We then
employed astratified fivefold crossvalidation approach, where models
wererefinedinfourfold and validated on the remaining part of the data.
Five different modelarchitectures (bag of words model (BOW), support
vector machine (SVM), Bio_ClinicalBERT, PubMedBERT and T5) were
refined and optimized with Optuna, and the best performing model,
according to average micro-F1-score and average micro-precision,
was selected. Almost all signs and symptoms were reliably identified
by allmodels, but asmall subset of six signs and symptoms performed
considerably less well. These consistently included the same attributes
and were subsequently excluded. Next, the highest scoringiterations
of each model architecture were compared using the hold-out test
data, on which PubMedBERT showed the best model performance
(Extended Data Fig. 2b). The optimal PubMedBERT architecture was
fine-tuned again onalllabeled data for the prediction of the 84 remain-
ing signs and symptoms that exhibited a micro-precision >0.8 or a
micro-Fl-score >0.8 (Extended DataFig. 2c). This finalmodel was then
used to predict whether specific signs or symptoms were described
inindividual sentences of the full corpus. To construct the final clini-
cal disease trajectories (Supplementary Table 4), the predictions of
multiple sentences were collapsed per year. These new clinical disease
trajectories encompass a wider range of neuropsychiatric signs and
symptoms, covering alonger time frame, and include alarger number
of donors compared with what has been previously published
(Supplementary Table 5).

Interpretation of signs and symptoms across common brain
disorders

The clinical disease trajectories represent a distinctive dataset
documenting neuropsychiatric signs and symptoms observed on
ayearly basis for each donor. Again, we performed an enrichment
analysis to determine whether the predicted signs or symptoms
were more frequently observed in each disorder than expected
(Fig. 2a). Of the signs and symptoms, 269 were significantly enriched
in specific diagnoses, of which 148 were also a priori defined to be of
diagnostic importance, a highly significant enrichment (y*=295.96,
P=2.5x107%). Importantly, the enrichment of the predicted dataset
for a priori predicted signs and symptoms is much more pronounced
thanthelabeled dataset, offering orthogonal evidence for the validity
of our NLP approach.

It is interesting that all neuropsychiatric signs and symptoms
were significantly enriched in at least one brain disorder, suggesting
that all these signs and symptoms were indeed relevant for (a subset)
of disorders. As expected, ‘dementia’and ‘memory impairment’ were
significantly enriched in dementias including AD, FTD, DLB, VD and
PDD, but not in PD without dementia. Similarly, MS showed a strik-
ing enrichment for ‘impaired mobility’ and ‘muscle weakness’ and
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b Domain Grouping Attribute
Disturbances in mood  Agitation, restlessness, changed behavior/personality, changed moods or emotions, anxiety,
and behavior  depressed mood, aggressive behavior, compulsive behavior, manic
Q Changes in consciousness,  Hallucinations, delusions, psychosis, paranoia, delirium, confusion, disorientation, wandering behavior
awareness and orientation
Psychiatric
Other psychiatric signs and symptoms  Admission to psychiatric hospital, feeling suicidal
Signs of (dis)inhibition  Apathy, lack of initiative, loss of sympathy/empathy, social disinihibition, socially inappropriate behavior,
frontal release signs, hyperorality
Agnosia, confabulations, memory impairment, poor short-term memory, head-turning sign, forgetful,
amnesia, bradyphrenia, cognitive decline, dementia
Cognitive
Apraxias, anosognosia, fagade behavior, aphasia, limited language comprehension, verbal impairment,
anomia, lack of planning/organization/overview, executive dysfunction
Sensory deficits  Hearing problem, negative sensory symptoms, olfactory and gustatory dysfunction,
positive sensory symptoms, visual impairment
Sensory[ Constipation, urinary incontinence, other urinary problems, orthostatic hypotension
autonomic
Signs of impaired mobility ~ Frequent falls, impaired mobility, disturbed gait, decreased (fine) motor skills
Motor deficits ~ Muscular fasciculation, hyperreflexia and other pathological reflexes, muscle spasticity,
q muscular weakness, dysarthria, swallowing problem
Cerebellar and vestibular  Loss of coordination, ataxia, equilibration disorder, nystagmus, vertigo
Motor system dysfunction
Extrapyramidal symptoms  Bradykinesia, facial masking, parkinsonism, muscle rigidity, tremor
General decline  Admission to nursing home, day care (medical), general health deterioration,
q activities of daily living impaired, cachexia, markedly reduced dietary intake
Aspecific symptoms  Fatigue, unable to concentrate, stress, vivid dreaming, sleep disorders (circadian rhythm),
General sleep disturbances, headache, seizures, weight loss, communication impairment

Fig.1|Introduction to the project. a, Workflow of the project describing the b, Clinical attributes (signs and symptoms), their domains, and groupings,

different data types in the NBB donor files (i), the processing of the clinical history
dataresultingin clinical disease trajectories (ii) and downstream analyses (iii).

including colors and illustrative brainicons. Relevant data, meta-data and
analyses for this project can be found on https://nnd.app.rug.nl.

‘fatigue’, which is very much in line with the disabling pathology of
the brain and spinal cord. However, where ‘impaired mobility’ was
significantly enriched in MS, PD, PDD, PSP, ATAXIA and MSA, ‘muscle

weakness’ was enriched in VD, MND, PSP, MSA and MS, showing that
ourapproach can detect aunique compendium of signs and symptoms
inadisorder-specific manner.
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Table 1| Overview of the most common NDs and corresponding abbreviations, including ICD-10 codes

Fullname Abbreviation Type ICD-10 n
Alzheimer's disease AD Progressive neurodegenerative disease G30 720
Cerebellar ataxia ATAXIA Progressive neurodegenerative disease GN 20
Bipolar disorder BP Psychiatric disorder F31 49
Control donor CON Control donor (without a clinical or neuropathological indication of brain disorder) 445
Dementia with Lewy bodies DLB Progressive neurodegenerative disease G31.8 31
Frontotemporal dementia FTD Progressive neurodegenerative disease G31.0 220
Major depressive disorder MDD Psychiatric disorder F32 57
Motor neuron disease MND Progressive neurodegenerative disease G12.2 19
Multiple sclerosis MS Neuroinflammatory disease G35 259
Multiple system atrophy MSA Progressive neurodegenerative disease G23.2G23.3 61
Parkinson’s disease PD Progressive neurodegenerative disease G20 134
Parkinson’s disease with dementia PDD Progressive neurodegenerative disease G20 126
Progressive supranuclear palsy PSP Progressive neurodegenerative disease 91
Schizophrenia SCz Psychiatric disorder F20 24
Vascular dementia VD Vascular disorder FO1 64

Dementias are frequently clinically misdiagnosed. Hence, we
aimed to determine whether we could identify neuropsychiatric signs
and symptoms that could contribute toimproved differential diagnosis
between subsets of frequently misdiagnosed disorders. We found a
number of signs and symptoms that were uniquely enriched in spe-
cific dementia subtypes, including ‘paranoia’, and ‘facade behavior’
in AD and ‘hearing problem’ and ‘muscle weakness’ in VD (Extended
Data Table 2). Similarly, MSA, PD, PSP and DLB are frequently mis-
diagnosed™'. We found that ‘depressed mood’ was unique to PDD,
‘apraxias’in DLB, ‘ataxia’ and ‘muscle fasciculation’in MSA and ‘visual
impairment’ in PSP (Extended Data Table 3). These findings suggest
that we retrospectively have created a unique dataset that describes
the clinical signs and symptoms that are associated with various brain
disorders, which could contribute to improved diagnosis.

Temporal profiling of signs and symptoms across brain
disorders
We utilized the clinical disease trajectories to conduct temporal profil-
ing of specific neuropsychiatric signs and symptoms across various
disorders. To this end, we calculated three different statistics. First,
we calculated the total number of year observations in each condi-
tioninrelation to the donors, to determine whether specific signs
and symptoms were significantly more frequently observed in differ-
ent diagnoses. Second, we calculated the temporal profile of those
signs and symptomes, as a distribution of the years in which they were
observed. Third, we performed asurvival analysis to determine whether
there are differences in the overall survival rate after the first obser-
vation of a sign or symptom between donors with different NDs. As
expected, we observed that the attribute ‘dementia’ was present at
asignificantly younger age in FTD" than in other dementias (Fig. 2b
and Supplementary Table 6). The survival analysis showed that, after
the first observation of ‘dementia’, the survival of donors with VD, PD
or PDD was significantly shorter than donors with AD or FTD. These
observationsare inline with clinical expectations and corroborate the
temporal validity of these clinical disease trajectories.
Synucleinopathies are neurological conditions that are charac-
terized by a-synuclein protein aggregation, including PD, PDD, DLB
and MSA. There is debate about whether these synucleinopathies
are different manifestations of the same underlying neuropathology
manifestingin different brain regions or whether there are unique neu-
ropathological processes associated with each disorder*¢. By studying

the temporal and survival profiles after the manifestation of specific
symptoms, we can determine whether these disorders exhibit unique
temporalfeatures, suggesting qualitatively different neuropathologi-
cal processes. Tostudy thisin more detail, we performed temporal pro-
filing analyses with ‘bradykinesia’ (Fig. 2c and Supplementary Table 6).
Similar to ‘dementia’in FTD, we found that ‘bradykinesia’ was observed
atasignificantly younger age inMSA thanin the other disorders. To the
contrary, the survival analysis showed that donors with MSA, PSP and
DLBwith ‘bradykinesia” had significantly shorter survival than donors
with PD and PDD. These findings are in line with the hypothesis that
there are qualitatively different aspects to these synucleinopathies, in
which PD and PDD are very similar, but that DLB, and especially MSA,
are uniquely different'*'¢. Both analyses corroborate the notion that
many brain disorders exhibit partially overlapping clinical symptoms
that manifest in a distinct temporal fashion, potentially indicative of
the neuronal substructures that are affected.

We next compared rare and mixed dementias, including
dementia-vascular encephalopathy (DEM-VE), DEM with senile involu-
tive cortical changes (DEM-SICC) and AD-VE. Dementias are abroad cat-
egory of disorders and mixed and rare forms of dementia are frequently
disregarded. We found that ‘dementia’ was observed at a significantly
later age in several mixed forms of dementia, including AD-VEand AD-PD,
thanin AD and VD (Extended DataFig. 3), suggesting that the pathogen-
esisgenerally strikes at later age in patients with these mixed disorders.
Furthermore, survival analysis suggests that AD, DLB and FTD might
exhibitan extended survival period after the manifestation of ‘dementia’
compared with several other subtypes of dementia. Our analysis deviates
in certain aspects from previous studies™, in which the diagnosis was
based only on clinical data. Future studies using neuropathologically
defined cohorts are necessary to address these differences.

Finally, clinically, it is difficult to differentiate between different
FTD subtypes and associated conditions, hence we aimed to identify
signsand symptoms that could differentiate subtypes (Extended Data
Fig.4a).‘Dementia’ observations were significantly lower in PSP cases
than in other FTD subtypes, suggesting that this FTD subtype is less
affected by dementia, whereas ‘compulsive behavior’ was consistently
higher in FTD-TAR DNA-binding protein (TDP)-B, FTD-TDP-C compared
with many other FTD subtypes (Extended Data Fig. 4b). Temporally,
‘dementia’ was observed earliest in FTD tauopathy (FTD-TAU) and
corticobasal degeneration (CBD) and latest in Pick’s disease (PiD) and
PSP. This temporal profile was consistent when these analyses were

Nature Medicine | Volume 30 | April 2024 | 1143-1153

1146


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02843-9

performed using ‘memory impairment’. Many of these observations
were in line with and extended upon earlier work and can contribute
toward a better understanding of the relationship between neuro-
pathology and clinical syndromes in FTD disorders®.

Comparing clinical with NDs

As neurodegenerative disorders are frequently clinically misdiag-
nosed'®", we aimed to determine the diagnostic accuracy of this brain
autopsy cohort. For this, we cleaned and linked the CD descriptions to
the human disease ontology and compared the resulting CD labels with
the ND (Fig. 3a). We then created a set of rules, exemplified in Fig. 3b,
to calculate the diagnostic accuracy (Fig. 3c). Most importantly, 84%
of neuropathologically defined AD donors and 83% of neuropathologi-
cally defined FTD donors were clinically diagnosed as AD (Jaccard score
(JS)=0.642) and FTD (JS = 0.466), respectively. We do note that this
also includes ‘ambiguous’ diagnoses, such as the CD dementia. MSA
(JS =0.465) was frequently clinically diagnosed as PD and both VD
(JS=0.117) and PSP (JS = 0.510) were clinically diagnosed as multiple
other disorders. Donors with both AD and DLB pathology were most
often clinically diagnosed only with AD. These findings suggest that the
brain donors of the NBB were also frequently diagnosed inaccurately,
ina disease-specific manner.

Predicting brain disorders using clinical disease trajectories
With the integration of machine-learning models into healthcare prac-
tices, we aimedto assess whether the ND could reliably be predicted from
clinical disease trajectories. For this, we established aworkflow to traina
gatedrecurrent unit (GRU-D) thatis particularly developed to work with
time-series datawith missing values. This model could reliably diagnose
most disorders for which we had a higher number of donors (Extended
Data Fig. 5a). We also calculated the percentage of accurate diagnoses
(in which the ND is considered to be the ground truth) for the GRU-D
model (Extended Data Fig. 5b,c) and the CD. Out of 1,810 donors, 1,342
were accurately diagnosed by the model, 83 were ambiguously diagnosed
(forexample, an AD diagnosis for an AD-DLB donor) and 385 were inac-
curately diagnosed. Clinically, 1,236 donors had an accurate diagnosis,
311were ambiguous (for example, both AD and FTD written down foran
AD donor) and 263 were inaccurate. This suggests that the model had a
higher percentage of accurate and inaccurate diagnoses simultaneously,
owing to the smaller percentage of ambiguous diagnosis.

Compared with the CD, the GRU-D predictions (Extended Data
Fig. 5d) performed better for FTD, similarly for AD and PD and worse
for MS and PSP. Both model and CD performed equally poorly on DLB,
VD, MND and MSA. The GRU-D model performed best for the diag-
nosis of donors for whom we had at least 100 training cases, whereas
most rare cases were missed. Of note, a subset of donors was consist-
ently inaccurately diagnosed by clinicians and the model, indicating
that these donors exhibited atypical disease-specific symptoms. We
hypothesized that there might be commonalities in the symptomatol-
ogy of donors with aninaccurate CD and included these inaccurately
diagnosed donors as a separate category in the next analysis.

Dimensionality reduction to characterize the clinical
heterogeneity

Tobetter understand the clinical heterogeneity of the various brain dis-
orders, we performed dimensionality reduction and clustering on the

temporal clinical disease trajectories. Six main clusters were identified
(Fig.4a) that were enriched for: (1) different types of dementias, occur-
ringlaterinlife (LATE-DEM); (2) PD and related disorders that manifest
extrapyramidal signs (PD"); (3) different types of dementias, occur-
ringatanearly age (EARLY-DEM); (4) CON donors and asymptomatic/
mild brain disorders (CTRL/ASYM.); (5) motor disorders including MS,
MND and ATAXIA (MS"*); and (6) psychiatric disorders (PSYCHIATRIC)
(Fig.4b,c). Of note, some disorders were clinically more homogeneous
than others. For example, donors with AD, MSA, PD, FTD, MND, MS,
PSYCH and CON tend to cluster relatively closely together, whereas
donorswith VD, PSP and DLB were much more heterogeneous (Fig. 4b).

To obtain insight into the signs and symptoms that differentiate
the clusters, we performed a differential analysis (Fig. 4d and Supple-
mentary Tables 7-16). Three distinct observations were made. First,
EARLY-DEM and LATE-DEM shared many signs and symptoms, but
differed in their temporal manifestation, hence their names. Second,
we observed a high number of motor domain attributes in both clus-
ter PD*and MS”*, with the PD* cluster having mainly extrapyramidal
symptoms and the MS”* cluster mainly ‘muscle weakness’ and ‘impaired
mobility’. Third, the PSYCHIATRIC cluster manifested more psychiatric
symptoms. These observations largely align with our previous char-
acterizations when we compiled donors according to their diagnosis
but, inaddition, alsoillustrate the heterogeneity of these disorders.

In addition, we performed an overrepresentation analysis to
determine whether clinically inaccurately diagnosed donors were
overrepresented in specific clusters (Fig. 4b,c and Supplementary
Table 6). It is interesting that inaccurate FTD, AD, PD, PSP and CON
donors were overrepresented in clusters other than their accurately
diagnosed counterparts, suggesting that these atypical donors share
clinical features with each other that masquerade as another group of
disorders. For example, inaccurate AD donors often masquerade as
PD" disorders, and vice versa, whereas inaccurate MSA donors often
manifest as early or late dementia. This insight elucidates the difficulty
of achieving precise diagnosesin a substantial proportion of patients
with neurodegeneration.

To assess the validity of the identified clusters, we aimed to
perform an enrichment analysis for the APOE4/4 genotype, which
is associated with early AD and more severe neurodegeneration in
general®®?*, Notably, the EARLY-DEM cluster exhibited a robust
and highly significant enrichment for the APOE4/4 genotype
(P=5.50 x1078), the LATE-DEM cluster showed a modest significant
enrichment (P=1.32 x107%), whereas the CTRL/ASYM cluster was sig-
nificantly underrepresented (P=2.87 x10™*). The remaining clusters
did notdisplay significant over- or underrepresentation. These findings
offer orthogonal genetic evidence for the validity of these clusters.

Subclustering analysis to identify data-driven clinical
subtypes
Tobetter understand the heterogeneity of donors withinacluster and
to identify data-driven clinical subtypes of disease, we performed a
subclustering analysis on donors grouped together in a main cluster.
Subclustering analysis of the merged-DEM clusters (EARLY-DEM
and LATE-DEM) resulted in four subclusters (1, s-LATE-DEM; 2,
EARLY-DEM; 3, MOTOR-DEM; and 4, PSYCH-DEM) (Fig. 5a). Subclus-
ter 1 (s-LATE-DEM) was significantly enriched for AD and DEM-SICC
and inaccurately diagnosed FTD-TDP. Subcluster 2 (s-EARLY-DEM)

Fig. 2| Clinical disease trajectories offer a wealth of information.

a, Integrated plot showing attribute (y axis) manifestation by NDs (x axis). The
dotsize corresponds to the proportion of donors in which an attribute was
observed. The dot color corresponds to the mean number of observations of
anattribute across donors. Orange highlight and asterisks represent attributes
important for diagnostics and significantly overrepresented signs/symptoms
(one-sided permutation test, FDR-corrected P < 0.1), respectively. oth. path.,
other pathological. b, ‘Dementia’ temporal profiling (n = 1,326 donors, of which

n=682with>1‘dementia’) showing density plot, Kaplan-Meier plot and three
violin plots (center marker, box limits and whiskers represent the median,
interquartile range (IQR) and 1.5x IQR). Two-sided Mann-Whitney U-test,
FDR-corrected Pvalues: 1.00 x10™* < P<1.00 x10% "1.00 x 10 < P<1.00 X 10™%;
"1.00x10°%<P<1.00%x107%""1.00x10"°<P<1.00x1075;""P<1.00 x107°,

¢, ‘Bradykinesia’ temporal profiling plots (n = 762 donors, of which n = 268

with >1‘bradykinesia’). All plots as defined in b.
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was significantly enriched for FTD-TDP, FTD-fused in sarcoma (FUS),
FTD-TAU and PiD. The symptomatology of this cluster in general
manifested at ayounger age and showed more ‘compulsive behavior’.,
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Subcluster 3 (MOTOR-DEM) was characterized by ‘muscle weakness’,
‘impaired mobility’ and other motor domain symptoms (Extended Data
Fig. 6a). This cluster was also significantly enriched for inaccurate AD,
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Fig.3| Comparison of CD with ND. a, Confusion matrix heatmap of ND (y axis)
versus CD (x axis). Values represent diagnosis observations and hue represents
the CD observations divided by the total ND observations for each disorder
group. b, Table containing illustrative examples of donors to show how CD
accuracy was assessed, resulting in three clinical accuracy categories: ‘accurate’,
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diagramin c. ¢, Venn diagrams depicting the intersection of ND and CD for 11
disorders and control cases. Total number of donors and the correspondingJS
values are shown below the disorder abbreviation. The percentage represents the
proportion of donors with ND who have the same CD (left) and the proportion of
donors with CD who have the same ND (right).

which suggests that AD cases with motor disturbances are clinically
frequently misdiagnosed. Subcluster 4 (PSYCH-DEM) was overrep-
resented for DLB, DLB-SICC, PD, PD-AD and psychiatric donors. This
analysis indicates that there might be clinical subtypes of dementia
that are manifesting beyond the boundaries of the individual diagnosis
that encompasses a relatively early type, psychiatric type, motoric
type and generic dementia type. The presence of individual psychi-
atric and motoric symptoms in subsets of dementia cases has been
reported previously”***, However, to date, no studies have performed
an integrative analysis of the combination of these neuropsychiatric

signs and symptoms and their temporal manifestation, resulting
in data-driven subtypes. These findings suggest that psychiatric and
motor symptoms might beindicative of the clinical subtypes of demen-
tia, potentially mediated by different neurological substructures.
Next, we performed subclustering analysis on the PD* cluster
whichresulted infour subclusters (1: LATE-PD*; 2: LATE-MENTAL-PD";
3: EARLY-PD*; and 4: EARLY-MENTAL-PD") (Fig. 5b). It is interesting
that two subclusters showed a more limited number of signs and
symptoms, one of which had an early onset (EARLY-PD", enriched
for MSA) and another with late onset (LATE-PD*, enriched for PD and
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inaccurate PSP donors). Conversely, the remaining two subclusters
manifested a broader range of signs and symptoms in the cognitive
and psychiatric domains (Extended Data Fig. 6b), again with early
onset (EARLY-MENTAL-PD") and late onset (LATE-MENTAL-PD"). It has
previously beendescribed that patients with PD and related disorders
can manifest cognitive and psychiatric problems”**%, This analysis
corroborates these findings and suggests that age of onset and whether
mental problems are present are independent disease features.

We also performed a subclustering analysis on the MS* cluster
(Fig. 5¢) and identified three main clusters: SENSORY-MS’*, COG/
PSYCH-MS/* and VERBAL-MOTOR-DIS. Most MS donors were clustered
insubclusters1and 2. The SENSORY-MS’* subcluster manifested fatigue
and many other attributes from the sensory/autonomic domain. The
COG/PSYCH-MS'* subcluster showed attributes from the cognitive
and psychiatric domain. Finally, the third VERBAL-MOTOR-DIS sub-
cluster was significantly enriched for amyotrophic lateral sclerosis
and other MNDs, controls and MSA, manifested later in life (Extended
DataFig.7a). MS, MSA and MND have previously been associated with
sensory, mental and motor problems*?%. Our analysis expands on
these observations and suggests that these motor disorders manifest
these symptoms largely independently and these data-driven subtypes
are indicative of different neurological substructures being affected.

Increasinglines of evidence suggest that mental illnesses are not
discrete categories but thatindividuals with these disorders manifest
behavior alongaspectrum oftraits**°. Our analysis of the PSYCHIATRIC
cluster corroborates this notion because we found three subclusters
beyondthe confines of the psychiatric diagnosis (Fig. 5d and Extended
DataFig.7b).Subcluster1(PSY-DEP) was enriched for CON and primarily
exhibited ‘depressed mood’. Subcluster 2 (PSY-MANIC) was enriched
for BP, which was primarily enriched for ‘mania’ and extrapyramidal
signs. Subcluster 3 (PSY-PSYCHOSIS) exhibits many observations of
‘psychosis’ and ‘feeling suicidal’, with an early age of onset, and was
enriched for SCZ donors.

Discussion

Thereisaclear need for new global approaches to study dementiaand
neurodegenerative disorders?. With the advent of machine-learning
models, new avenues for improved diagnosis have become feasible.
However, publicly available clinicalinformation fromalarge cohort of
neuropathologically defined brain autopsy donors was missing. In the
presentstudy, we constructed clinical disease trajectories from medical
record summaries from brain donors with various brain disorders. We
illustrated the value of this dataset by performing temporal analyses
across different dementia subtypes, predictive modeling of end-stage
ND and the identification of subtypes of dementia, MS and PD. To bet-
ter understand, improve diagnostics and develop new interventions
and preventive measures for dementia and other brain disorders, we
strongly advocate integrative approaches to collect, harmonize and
share clinical parameters across brain banks and research institutes.
We believe that this is a promising strategy to obtain a much deeper
insightinto theinterindividual factors that contribute to pathophysi-
ological mechanisms. We believe that our strategy to convert textual
datatoclinical disease trajectories using NLP could functionasaroad
map for other studies.

The clinical trajectories reconstructed in the present study were
generated using an NLP model based on medical record summaries,
potentially resulting in multiple levels in which misinterpretation or
biases could have emerged. First, the retrospectively generated clini-
cal disease trajectories will contain missing values, due to medical
doctors not being able to provide all information or not all signs and
symptoms being examined during each visit. Fundamentally, this is a
typical sampling problem often encountered in different biomedical
research fields. We believe that the medical record summaries can be
regarded as asample of the disease manifestation. To deal with missing
values, we collapsed the clinical disease trajectories on the year level,

imputed additional data points and implemented statistical procedures
that were developed to deal with missing data. Second, labeling errors
could have been made in the training data and during NLP and might
have influenced the results. Other artificial intelligence models, such
as generative pretrained transformer-based models and linked entity
relationship models (including KRISSBERT) also hold great promise to
generateclinical disease trajectories fromtext data. These unsupervised
models might be easier and faster to implement than the supervised
approachthat we haveimplementedin the present study. However, the
advantage of the supervised modelsis that the researchers have much
more control over the exact definition of the medical term. Third, even
thoughthesigns and symptoms used in the present study were identi-
fied and defined in several iterations, it is possible that relevant signs
and symptoms were not included in the proposed ontology. Fourth,
the differential findings concerning the temporal and survival profiles
and the clustering between and within NDs might be confounded by
additional variables such as medical comorbidities and treatments.
Last, the NDs were assigned to donors by different neuropathologists
overlong periods of time, potentially confounding some of the results.

Neuropathological assessment indicated that a substantial pro-
portionof donors had aninaccurate CD, comparable to previous pub-
lications'®", Our work suggests that most of theinaccurate diagnoses
were caused by overlapping symptomatology and subsets of atypical
donors who manifest consistently differently from the typical dis-
ease profile. Misdiagnoses in general not only are harmful to patients
because they might not alwaysreceive proper medical treatment, but
can also majorly confound large-scale studies that rely on CD, such
as GWASs and epidemiological studies. Hence, a better understand-
ing of misdiagnoses is critical for both fundamental research and
medical care. The diagnostic accuracy of this cohort is also relevant
forresearchersusing these braintissues. Overall, donors withaninac-
curate CD hold potential as a cohort for identifying (bio)markers that
could improve the diagnostic process.

Although thereis heterogeneity and atypical groups of donors, we
theorized that the clinical disease trajectories could serve asapredictor
for the ND. We successfullyimplemented a recurrent neural network to
predict the ND for the common diagnoses, although major improve-
ments are still necessary to become clinically relevant. Much larger
samplesizes areimportant, especially for rare and mixed diseases, and
we hope that other brain banks will follow our lead.

Finally, the clinical disease trajectories are arepresentation of the
experienced symptomatology. We hypothesized that donors with a
shared or similar symptomatology pattern would cluster together in
multidimensional space, beyond the confines of specific NDs. These
clusters and subclusters offered us insight into disease heterogeneity
and symptomatological subtypes of disease. We found that a persis-
tent subset of donors manifest psychiatric symptoms across brain
disorders, such as MS, dementiaand PD donors with pronounced psy-
chiatric symptoms. Thisisin line with previous research®***' and sug-
gests that different neurological substructures might be differentially
affectedinthese subtypes. Most current postmortem research studies
disregard this vital clinical information and implement case-control
designs, inwhich these clinical parameters are neglected. The unique
clinical disease trajectories presented in the present study, together
with brain autopsy material from the NBB, now allow researchers to
study the molecular and cellular features with (clusters of) neuropsy-
chiatric signs and symptoms. We believe that incorporating clinical
parameters into brain autopsy material selection and study designs
is a critical step toward a more personalized understanding of brain
disorders. By capturing the diverse clinical profiles and subtypes of
various brain disorders, our research opens the door to future indi-
vidualized healthcare strategies, where treatment approaches can be
customized to each patient.

Taken together, we have established a highly unique resource that
couldbenefitawide range of researchers, namely: (1) epidemiologists
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who study the (temporal) symptomatology of various brain disorders,
(2) molecular biologists who aim to obtain a deeper understanding
of the cellular and molecular features that give rise to neurodegene-
rative diseases and (3) computational researchers who aim to build
predictive models for the diagnosis and prognosis of patients with
dementia. These datasets and ontologies are accessible on our website
(https://nnd.app.rug.nl).
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Methods

Netherlands Brain Bank

NBB medical record summaries. All adult citizens of the Netherlands
can register to become donors in accordance with NBB procedures,
which are in full compliance with Dutch and European law. All NBB
donors provided informed consent for their tissue and their data to
be used for research purposes. The forms and procedures of the NBB
were approved by the Free University Medical Center—Medical Ethics
Committee (VUmc METC, Amsterdam, the Netherlands). Onthe death
ofadonor, the NBB requested in-depth information from the medical
specialists and general practitioner/geriatrician about the donor’s
specific diagnoses, general health status, surgeries and familial con-
ditions. This information was summarized and translated from Dutch
to English by trained medical staff under the auspices of the coordi-
nator medical information, resulting in consistent usage of language
and terminology across medical summaries, limiting interdonor and
intersummarizer effects.

NBB neuropathological examinations and ND. After each brain
autopsy, neuropathologists performed extensive macroscopic and
microscopic neuropathological examinations for the NBB. The neuro-
pathologists used thisinformation to assign a final diagnostic label to
each donor, which we referred to as ‘neuropathological diagnosis’ or
‘ND’inthis paper (Supplementary Table1). For more information onall
NDsused, including their relationship to existing ontogenies (including
the International Classification of Diseases, 10th revision (ICD-10))*, see
Table 1and Supplementary Table 2. We have also established a formal
ontology to classify and define all of the implemented NDs that are
accessible on our website and BioPortal (https://bioportal.bioontology.
org/ontologies/NND_ND). This ND can contain either (1) a clearly
defined ND with clinical signs and symptoms such as AD, (2) specific
neuropathological traits or NDs that are not associated with a single
clinical diagnosis such as hippocampal sclerosis or argyrophilic grain
disease (AGD), (3) apsychiatric diagnosis based on clinical observations
such as SCZ, (4) specific neuropathologically defined diagnoses that
are, or were, final diagnostic labels used exclusively by the NBB, such as
DEM-SICC or (5) aneutral label such as ‘control’,indicating the absence
of or minimal neuropathological changes and no neurological or psy-
chiatric CD. These ‘control’ donors, however, often suffered from other
peripheral diseases, such as cancer. Eachdonor can have multiple NDs.

Parsing and matching

Parsing of the medical record summaries. The semi-structured medi-
cal record summaries were parsed using a broad set of Python-based
parsers. Next, the ‘clinical history’ information was parsed per year,
and per sentence, setting the stage for temporal profiling through
NLP. Sentences without clear year descriptions were categorized as
‘year unknown’. Other time references, such as ‘last 2 months’, ‘last
2 years’and ‘atbirth’, were converted into their respective years. Tem-
poral descriptions spanning multiple years (for example, 2005-2007)
were manually transformed into individual years (for example, 2005,
2006 and2007). Sentences referencing previous years were manually
adjusted (for example, ‘in comparison to 2003’).

Matching CD to NND—Human Disease Ontology. The values parsed
under the header ‘clinical diagnosis’ were manually matched to classes
of the Human Disease Ontology (March 2023 release). In some cases,
the Human Disease Ontology did not contain all relevant clinical
phenotypes (such as primary progressive aphasia and its subtypes,
corticobasal syndrome and posterior cortical atrophy), hence we
manually modified the ontology toincorporate these labels. The modi-
fied Human Disease Otology (NND—Human Disease Ontology) is acces-
sible on our website and BioPortal (https://bioportal.bioontology.org/
ontologies/NND_CD). These manually matched CDs were referred to as
‘clinical diagnosis’ or ‘CD’ in the present paper.

Selection of files from the NBB
Selection based on characters. Donors were selected based on
sufficient clinical and neuropathological information, defined as the
presence of >500 characters in the clinical-neuropathological sum-
maries. The final selection consisted of 3,042 donors, with 199,901
sentences of clinical history data.

Selection based on diagnosis. The donors were diagnosed withawide
range of neuropathologically defined brain disorders and received one
or multiple NDs, fromalist of 89 diagnoses (Table 1and Supplementary
Tables 1and 2). Donors who were diagnosed with another diagnostic
label were excluded. The most common NDs and their numbers, age
atdeathand sex distribution are depicted in Supplementary Fig. 1a.

Defining signs and symptoms

To identify key signs and symptoms relevant for crossdisorder brain
research, we went through several iterations of identifying attributes
and labeling sentences fromtheclinical history of a predefined random
setof donors (Fig.1a,b). The list of signs and symptoms was composed
based on three criteria: (1) medical-scientific relevance, (2) sufficient
presence in the ‘clinical history” and (3) unambiguity with respect to
the definition. Clinical signs and symptoms used for the CD from the
most common neurodegenerative and psychiatric disordersinthe NBB
were compiled. In addition, attributes that reflect general wellbeing,
health and functioning were added. To maintain clinical relevance, we
further refined the list by including only signs and symptoms that had
sufficient prevalence inthe randomset to be clinically meaningful. The
NND—Clinical History Ontology is now also accessible via our website
andBioPortal (https://bioportal.bioontology.org/ontologies/NND_CH).
Foracomprehensive overview of allinitially considered attributes that
werenotincluded, pleaserefer to the miscellaneous section of our ontol-
ogy. Where possible, we have included the Unified Medical Language
Systemidentifier for each sign or symptom, providinga clear reference.
Ultimately, 90 signs and symptoms were identified and defined (includ-
ing inclusion and exclusion criteria and examples) and externally vali-
datedbyalicensed neurologist, encompassing 14 groupings, including
‘disturbances in mood and behavior’, ‘extrapyramidal symptoms’ and
‘cognitive and memory impairment’ in 5 broad domains: psychiatric,
cognitive, motor, sensory/autonomic and general (Fig. 1b).

Labeling of donor files and interannotator agreement

Training data to refine (referring to training or fine-tuning, depend-
ing on the model architecture) supervised NLP models was obtained
by labeling individual sentences from arandom predefined selection
of donors. In total, 293 donor files were selected, corresponding to
approximately 10% of the data. Scoring and evaluation were performed
by trained medical staff of the NBB under the auspices of the coordi-
nator medical information from the NBB. The final training dataset,
containing 18,917 sentences, was labeled for the 90 signs and symptoms
by1lscorer (Supplementary Table 3), resulting in a gold standard that
was used as input to refine the NLP models for sentence classification.
Then, 1,000 sentences were randomly selected from the training set
andscoredindependently by asecond scorer to calculate theinteran-
notator agreement.

NLP model optimization and comparison

The NLP task at handis the multilabel classification of the 90 attributes
inthe previously parsed 199,901 sentences. The labeled sentences were
stratified and split for crossfold validation (Supplementary Fig. 2a),
to refine different NLP models. The Python library, MultilabelStrati-
fiedKFold*, was used to split the data into test (20%) and training and
validation (80%) fractions. The data were stratified to evenly distribute
the different attribute labels over the test and training and validation
sets*. The training and validation sets were split further using the
same MultilabelStratifiedKFold library for the k-fold crossvalidation
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procedure used during model optimization, with a k of 5. To ensure
accurate comparisons, the same splits were used for the training and
validation of every model.

We compared the performance of multiple NLP classification
models, to select the best performing model. The best model was used
to predictall sentences. We selected two pretrained BERT* models and
one T5 (ref. 36) model from HuggingFace: PubMedBERT?, pretrained
onPubMed abstracts,and Bio_ClinicalBERT?®, pretrained on electronic
healthrecords. The standard version of the TSmodel was selected from
HuggingFace. All transformer models were then fine-tuned on the
training data using Simple Transformers®. In addition, two common
baseline models were used, a BOW and an SVM. The BOW classifier
was implemented within a logistic regression framework on word
frequency. For the SVM classifier, the Scikit-learn package linearSVC*°
was used. For BOW and SVM, the sentences were preprocessed through
Stop Word Removal and text vectorization, and were wrapped in the
Scikit-learn package OneVsRestClassifier*°.

As our dataset is imbalanced, we assessed model performance
using micro-precision, micro-recall and micro-F1-score. Hyperparam-
eter tuning for allmodels was conducted using Optuna*, maximizing
the average micro-Fl-score across the 5 crossvalidation folds for
25 trials. Given our emphasis on correct classifications (precision)
overidentifying every sentence (recall), we first identified the top five
iterations of each model type based on the micro-F1-score. The final
model was then selected based on the highest micro-precision score.

Descriptive statistics

Processing of NLP large language model predictions. The best per-
forming model was used to predict the full corpus of sentences. These pre-
dictionswere convertedinto clinical disease trajectories by first grouping
the predictions per donor, followed by aconversionintoabinary absence/
presence matrix of year x attributes. Predictions for which the year
was unknown were included in general data exploration but excluded
from temporal profiling, modeling or dimensionality reduction.

Sign and symptom distribution per main diagnosis. To identify
signs and symptoms that were more frequently identified in specific
disorders than expected, the total number of signs and symptoms were
compiled for all donors with the same ND, and three statistics were
calculated and plotted as a dot plot: first, the mean number of obser-
vations in sentences for donors belonging to an ND (dot color) and,
second, the proportion of donors with a ND that contained minimally
one observation of the symptoms (dot size). The color cut-off was set
to amaximum of five. The figure also contained a highlighted orange
circle around the dot which indicates whether the sign or symptom
was of known diagnostic importance for the specific disorder. An
asterisk was depicted if the attribute was more commonly observed
than expected, given arandom background distribution as calculated
withapermutation test. The random background distribution was cal-
culated by randomly permuting the diagnosis labels of the individual
donor datawith100,000 permutations. The Pvalue was calculated as
the proportion of observationsin which the observed value was higher
thantherandombackground, and was multiple testing corrected using
the Benjamini-Hochberg false discovery rate (FDR). Moreover, we
performed atwo-sided y* test to identify whether the significant signs
and symptoms (asterisk) per main diagnosis and the signs and symp-
toms of known diagnosticimportance (circles) were overrepresented.

Donors were compiled and studied according to subsets of neu-
ropathological disorders. First, we compiled donors with the most
common single ND. Second, we compiled rare and mixed dementias.
Last, we compiled different FTD subtypes.

Observational profiles of the signs and symptoms. To test whether
the number of observations of a given sign or symptom differed
between different NDs, we calculated the distribution of the number of

year observations per donor withineach ND and performed two-sided,
pairwise Mann-Whitney U-tests using Scipy, followed by an FDR mul-
tiple testing correction. These results were visualized as a Seaborn*
violin plot which was accompanied by a heatmap showing the results
of pairwise significance testing, with -10log(FDR)-corrected P values
depictedin orange when significant (P < 0.01). To account for potential
sexbias, we further subsampled the dataaccording to the sex with the
lowest numbers to have an equal number of male and female donors
foreach ND. These subsampled datawere also used for the analysis of
temporal profiles (see ‘Temporal profiles of the signs and symptoms’)
and the survival analysis (see ‘Survival analysis’).

Temporal profiles of the signs and symptoms. To test whether
the distribution of observations of a given sign or symptom differed
temporally between disorders, we performed two-sided, pairwise
Mann-Whitney U-tests using Scipy, followed by an FDR multiple test-
ing correction. These results were visualized as a Seaborn violin plot
as described in ‘Observational profiles of the signs and symptoms’.
These results were also plotted as a kernel density plot depicting the
distribution of the temporal observations across all donors compiled
according to their main diagnosis.

Survival analysis. Survival analysis plots depicting the survival of
the patients after the first observation of agiven sign or symptomwere
made with Scikit Kaplan-Meier estimator. To test whether the survival
after the observations of agiven sign or symptom differed temporally
betweendisorders, we performed two-sided, pairwise Mann-Whitney
U-tests using Scipy, followed by an FDR multiple testing correction.
These results were visualized as a Seaborn violin plot as described in
‘Observational profiles of the signs and symptoms’.

Diagnosis accuracy, predictive modeling and dimensionality
reduction

Selection of donor files. To select high-quality disease trajectories
for predictive modeling and dimensionality reduction, we applied sev-
eral steps. First, we imputed additional datapoints based on clinically
defined rules of thumb. Briefly, signs and symptoms associated with
neurodegeneration (column ‘IsNeurodegenerationAssociatedTrait’
in Clinical History Ontology) that were observed in donors suffer-
ing from a progressive neurodegenerative disease (column ‘IsPro-
gressiveNeurodegenerativeDisease’ in Neuropathological Diagnosis
Ontology) were assumed to remain present after the first observation.
Second, for both diagnostic prediction and the analysis of CD, we
selected only donors with a single ND including control, AD, PD or
PDD, VD, FTD, DLB, ATAXIA, MND, PSP, MS and MSA. We also selected
donors with the combination of AD and DLB, the most common form of
mixed dementia. For dimensionality reduction, we added donors with
amentalillness (MDD, BP, SCZ, post-traumatic stress disorder, autism
spectrumdisorder, obsessive-compulsive disorder) and donors with
other, or mixed, types of dementia (CBD, AD-DLB, AD-CA (congophilic
angiopathy), AD-VE, PD-AD, DLB-SICC, DEM-SICC, DEM-SICC-AGD and
DEM-VE). Third, for all three analyses, we selected donors for whom
the autopsy was performed in or after 1997, as the quality of the sum-
maries improved. Fourth, donors with a diagnosis other than control
with fewer than five observations in their clinical disease trajectory
were excluded. Together, these criteria resulted in 2,174 donors for
dimensionality reduction and 1,810 donors for predictive modeling
and the analysis of the CD.

Analyzing CD accuracy. Most donors had more than one CD through-
outlife. Toanalyze the agreement between CD and ND, we applied the
following filtering steps. First, for each ND of AD, PD/PDD, VD, FTD,
DLB, AD-DLB, ATAXIA, MND, PSP, MS or MSA, we compiled a diction-
ary of CDs that is accurate for these 11 disorders based on the modi-
fied Human Disease Ontology. Second, we assigned clinical accuracy
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labels to each donor, being ‘accurate’, ‘inaccurate’ or ‘ambiguous’, as
exemplified in Fig. 3b.

Finally, the agreement with the ND was depicted as a confusion
matrix of observations and Venn diagrams, with aJaccard index. Clini-
cally inaccurate donors were further studied in the dimensionality
reduction and clustering approach described below.

Predicting main diagnosis from clinical disease trajectories with
GRU-D. To predict the main diagnosis from the clinical disease trajec-
tories, weimplemented apredictive modeling framework (GRU-D) that
was ideally suited to deal with temporal missing data****. The filtered
dataset was split into five folds with each fold containing balanced
training, validation and testing sets (Supplementary Fig. 6) using the
Scikit-learn package StratifiedKFold*’. Sex, age at death and age when
asign or symptom was observed were included. We trained and opti-
mized this model using default settings for 50 epochs. The test set was
used onceto estimate final model performance. A confusion matrix of
observations was made to show the (dis)agreement with the ND. Again,
we calculated the percentage of accurate, inaccurate and ambiguous
donorsineachdisorder group and showed this as a stacked bar plot.

To compare CD, ND and GRU-D-predicted diagnosis, we
expanded the Venn diagrams from ‘Analyzing CD accuracy’ with the
GRU-D-predicted diagnosis.

Dimensionality reduction and clustering of CD trajectories with
Seurat. To identify clinical subtypes of neurodegenerative disorders
in anunbiased fashion, we implemented Seurat* and clustered donors
accordingtothe similarity of their clinical disease trajectories. To bal-
ance qualitativeinformation (whether donors exhibited specific signs/
symptoms) and temporal information (the age at which these signs/
symptoms manifested), we converted the clinical disease trajectories
into two separate matrices: a flattened observation matrix (in which
the number of observations per symptomwere counted over the whole
lifespan of each donor) and a temporal matrix (in which the number
of observations per symptom were counted in overlapping age bins,
for example, signs and symptoms occurring at age 15-45, 20-50 and
25-55 years). Thetwo matrices wereloadedinRand then convertedinto
Seurat Assays. For each Seurat Assay we performed normalization, scal-
ing and principal component analysis on all features using default set-
tings. This was followed by a weighted nearest neighbor (wnn) analysis
through the function FindMultiModalNeighbors with default settings.
Clustersresulting fromthe function FindClusters were visualized as a
Uniform Manifold Approximation Projection (UMAP) and an accompa-
nyingidentity bar plot. Donors with aninaccurate CD were visualized
with a triangle and an ellipse was drawn around 95% of the donors of
each ND. We performed two separate Fisher’s exact tests, to determine
whether certain disorders or clinically inaccurately diagnosed donors
were overrepresented in specific clusters. The function FindMarkers
was used to find significant signs and symptoms for both matrices for
each cluster, which were visualized as a temporal dot plot. Finally, to
investigate differences within clusters that are symptomatologically
similar, we performed asubcluster analysis on multiple main clusters.

Homozygous APOE4 genotype overrepresentations. To validate
theidentified clusters, we collected APOE genotype information from
donorsofthe NBB and determined whether homozygous APOE4 donors
were over-orunderrepresented across clusters using Fisher’s exact test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The donor general information, information about the NDs used,
the training dataset with labeled sentences and the clinical disease

trajectories areincluded as Supplementary Tables1,2, 3 and 4, respec-
tively. We utilized random donor identifiers that do not contain the
year of death, in contrast to the NBB identifiers. The age of death infor-
mation has been adjusted to a 5-year interval. Donors aged >95 years
were grouped into the 95+-year category. Donors aged <36 years were
grouped into the 35-year category. NDs with fewer than ten donors
were added to the parentinthe ontology. Inaddition, all of the unique
datasets and supporting ontologies are accessible on our website
(https://nnd.app.rug.nl) and supplementary data are available on
https://zenodo.org/records/10534111. All supporting ontologies are
also publicly accessible on BioPortal. The March 2023 release of the
Human Disease Ontology used in the present study can be found
on https://github.com/DiseaseOntology/HumanDiseaseOntology/
releases/tag/v2023-03-31. The original data and medical record sum-
maries are available from the NBB, but restrictions apply to the avail-
ability of these data, which were used under license for the present
study, and are not publicly available. However, any researcher can make
adataortissue request to the NBB, by contacting eNBB@nin.knaw.nl.
Inaddition, I. Huitingais the director of the NBB and can be contacted
on http://i.huitinga@nin.knaw.nl to discuss the original NBB data.

Code availability

Python (v.3.8.2) was used throughout this project in combination
with the following software packages: Pandas (v.1.3.5), Fuzzywyzzy
(v.0.18.0), Optuna (v.3.0.3) and Simpletransformers (v.0.63.9). Multiple
functions from the package Scikit-learn (v.1.0.2) were used to
create the BOW and SVM models, such as OneVsRestClassifier,
LogisticRegression, LinearSVC and TfidfVectorizer. Seaborn (v.0.12.0)
and Matplotlib (v.3.6.0) were used for visualizing data analyses. SciPy
(v.1.8.1) and statsmodels (v.0.13.2) were used for statistical analyses.
R (v.3.4.4) was used together with Seurat (v.0.12.0) for dimension-
ality reduction and clustering of clinical disease trajectories.
Models used in the present study were fine-tuned versions of the pre-
trained models PubMedBERT (https://huggingface.co/microsoft/
BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext), Bio_Clini-
calBERT (https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) and
T5 (https://huggingface.co/t5-base). The fine-tuned NLP model gener-
ated during the present study is available from https://huggingface.
co/NND-project/Clinical_History_Mekkes_PubmedBert. The trained
GRU-D model is available on https://huggingface.co/NND-project/
Clinical_History_Mekkes_GruD. Code used for data analysis and
model training has now been made publicly available in the following
repository: https://github.com/NetherlandsNeurogeneticsDatabase/
Clinical_History NLP.
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Extended Data Fig. 1| Dataset characteristics and training data attribute
distribution. General outline of all data. a) Violin plot (center marker, box limits
and whiskers represent the median, interquartile range and 1.5x interquartile
range) showing the age and number of donors (n = 3,042 total individual donors)

of the most common Neuropathological Diagnoses, separated b

y sex.

b) Integrated dot and bar plot showing the manifestation of signs and symptoms

453 0
(Y-axis) by diagnoses (X-axis) for the labeled dataset. The dot size corresponds
to the proportion of donors in which a sign/symptoms was observed. The dot
color corresponds to the mean number of observations of a sign/symptom
across donors. Signs and symptoms important for diagnostics are highlighted in
orange. Significantly overrepresented signs/symptoms were visualized with an
asterisk (one-sided permutation test, FDR corrected P < 0.1).
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significant attributes are depicted (heatmap, left), as well as a dotplot showing
the median age of onset of temporally significant attributes (right) (two-sided
Wilcoxon rank-sum test), with width set to the standard deviation and height set
to percentage of donors experiencing the attribute.
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Extended Data Table 1| Labeled example sentences

Example sentences Sign/symptom Shortened definition*

He had amnestic disorders like memory =~ Memory Memory impairment is an unexpected or
loss and disturbed imprinting. impairment unexplained decrease in the ability to recall

The long term memory showed hiatuses.
Huge gaps occurred in the patient's
memory.

His memory deteriorated slowly.

previously learned information. Whenever
the clinical summary mentions short term
memory problems, long-term memory
problems, or just ‘memory problems’, we
score this parameter.

Visual hallucinations were primarily Hallucinations

present during the night.

In September patient had hallucinations.
The patient saw children and people in
her house who did not belong there.
Before admittance patient was confused

Hallucinations involve sensing things such
as visions, sounds, or smells that seem real
but are not. In the clinical summaries of the
NBB, the type of hallucination is not always
specified. When specified, most frequently it
is written down as “acoustic/auditory’ or

had hallucinations and was disoriented
especially during the night.

‘visual’. We include all types of
hallucinations here.

There was clear rigidity right more than ~ Muscle rigidity Muscle rigidity is a severe state of

left. hypertonia where muscle resistance occurs

Examination showed rigidity at all throughout the entire range of motion of the

extremities. affected joint independent of velocity. It is
frequently associated with lesions of the
basal ganglia.

In February the patient was diagnosed Orthostatic “A sudden fall in blood pressure that occurs

with orthostatic hypotension. hypotension when a person assumes a standing position”.

Despite medication adjustments Orthostatic hypotension is a finding (sign).
orthostatic hypotension and dizziness Symptoms generally include dizziness,
remained. blurred vision, and syncope.

After 3 minutes the pressure was 144/95

mmbhg a picture compliant with

orthostatic hypotension.

In July the patient reported difficulty Unable to Impairment in concentration or attention.

with attention and concentration. concentrate This can be caused by any progressive
neurodegenerative disease, a psychiatric
disease, but also due to medication,
intoxication, or a metabolic disease. We
include all sentences concerning reduced
attention or concentration.

*for complete definitions and inclusion and
exclusion criteria see https://nnd.app.rug.nl

Example sentences that describe the following signs or symptoms and their shortened definition and inclusion/exclusion criteria: ‘memory impairment’, ‘hallucinations’, ‘muscle rigidity’,
‘orthostatic hypotension’ and ‘unable to concentrate’.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02843-9

Extended Data Table 2| Common dementia symptomatology

Symptom | A, PDD DLB VD FTD
status
Uniquely Amnesia  Vivid dreaming - Muscle Communication
enriched weakness impairment
Fagade General health Urinary Hyperorality
behavior deterioration incontinence
Paranoia Fatigue Hearing Changed moods or
problem emotions
Sleep disturbances Compulsive
behavior
Equilibration disorder
Dysarthria
Decreased (fine) motor
skills
Frequent falls
Impaired mobility
Constipation
Hypotension,
orthostatic
Other urinary problems
Olfactory and gustatory
dysfunction
Depressed mood
Uniquely Apraxias - Cogflitive -
depleted decline
Restlessness

Core findings in the group of most common NBB dementias (AD, DLB, PDD, VD and FTD). Overview of signs and symptoms that are significantly enriched in only one disorder (top) and
overview of signs and symptoms that are not significantly enriched in one disorder (bottom). An attribute was significant when it was more commonly observed than expected given a
random background distribution. The random background distribution was calculated by randomly permuting the diagnosis labels of the individual donor data with 100,000 permutations.
The P value was calculated as the proportion of observations in which the observed value was higher than the random background and was multiple testing corrected using the Benjamini-

Hochberg FDR.
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Extended Data Table 3 | Frequently misdiagnosed disorder symptomatology

Symptom status (PD  PDD DLB MSA PSP
Uniquely - Activities of daily ~ Apraxias Ataxia Visual
enriched living impaired impairment
Admission to Muscle
nursing home fasciculation
Day care, medical Urinary
incontinence
Dementia Positive sensory
symptoms
Forgetful Bradyphrenia
Agitation
Depressed mood
Uniquely - - General health - -
depleted deterioration
Parkinsonism

Equilibration disorder
Dysarthria

Swallowing problem
Decreased (fine) motor
skills

Frequent falls
Impaired mobility

Core findings in the frequently misdiagnosed group of disorders PD, PDD, DLB, MSA and PSP. Overview of signs and symptoms that are significantly enriched in only one disorder (top)

and overview of signs and symptoms that are not significantly enriched in one disorder (bottom). An attribute was significant when it was more commonly observed than expected given a
random background distribution. The random background distribution was calculated by randomly permuting the diagnosis labels of the individual donor data with 100,000 permutations.
The P value was calculated as the proportion of observations in which the observed value was higher than the random background and was multiple testing corrected using the Benjamini-

Hochberg FDR.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX O O OX OO0OS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Upon death of a donor, the NBB requested in-depth information from the medical specialists and general practitioner/geriatrician regarding
the donor’s specific diagnoses, general health status, surgeries, and familial conditions. This information was summarized and translated from
Dutch to English by trained medical staff. 90 signs and symptoms were identified and defined, and were scored in a subset of medical record
summaries from 293 donors. Clinical Diagnoses were matched to Human Disease Ontology diagnoses.

Open source code used for data collection:
Pandas 1.3.5 and Python 3.8.2 were used throughout this project. For the parsing of the medical record summaries Fuzzywuzzy (0.18.0) was
used to detect specific headers in the clinic-neuropathological reports.

Data analysis Data analysis open-source code used:
Pandas 1.3.5 and Python 3.8.2 were used throughout this project.
The Python package MultilabelStratifiedKFold 0.1.7 was used to split the training data.
Multiple functions from the package Scikit-learn (1.0.2) were used to create the BOW and SVM models, such as OneVsRestClassifier,
LogisticRegression,LinearSVC, and TfidfVectorizer.

Optuna 3.0.3 was used to optimize the different NLP models.
NLP model performance was analyzed using Scikit-learn classification_report.

Simpletransformers (0.63.9) MultiLabelClassificationModel was used to create the transformer based models. Models used in this study were
fine-tuned versions of the pre-trained models PubMedBERT (https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-
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abstract-fulltext), Bio_ClinicalBERT (https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) and T5 (https://huggingface.co/t5-base).

The fine-tuned NLP model generated during the current study is available from https://huggingface.co/NND-project/
Clinical_History_Mekkes_PubmedBert.
The trained GRU-D model is available on: https://huggingface.co/NND-project/Clinical_History_Mekkes_GruD.

Code used for data analysis and model training has now been made publicly available in the following repository: https://github.com/
NetherlandsNeurogeneticsDatabase/Clinical_History NLP.

R (3.4.4) was used together with Seurat (0.12.0) for dimensionality reduction and clustering of clinical disease trajectories.
Seaborn (0.12.0) and Matplotlib (3.6.0) were used for visualizing data analyses.

SciPy (1.8.1) and statsmodels (0.13.2) were used for statistical analyses.

No commercial code was used.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The donor general information, the training dataset with sentences and labels, and the clinical disease trajectories are included as Supplemental Tables 1, 15 and 3
respectively. In addition, all of the unique datasets and supporting ontologies are accessible on our website (https://nnd.app.rug.nl). The data can also be found on
https://zenodo.org/doi/10.5281/zenodo.10526890. The original medical record summaries that support the findings of this study are available from the
Netherlands Brain Bank but restrictions apply to the availability of these data, which were used under license for the current study, and are not publicly available.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender The primary aim of this study was to convert the medical record summaries into standardized disease trajectories, based on
90 cross-disorder sign and symptoms. We did not identify any signs or symptoms for which we a priori assumed that they
would be relevant for one sex and or gender only. Nor did we observe striking sex differences in the manifestation of the
signs and symptoms.

The second aim of this study was, to interpret the validity of the temporal disease trajectories by interpreting them into the
context of different subsets of brain disorders including alpha-synucleopathies, frontotemporal dementias, motor disorders,
dementias, psychiatric disorders. As this is a large binary temporal dataset from donors with a broad range of brain disorders
(and combinations thereof), we don’t suggest that our analyses are in any way exhaustive, and we have not focused on
differences between sexes within disorders.

We corrected for sex in our statistical designs for profiling of the manifestation, temporal profiling and or survival analysis of
specific signs and symptoms across a subset of disorders. To this end we used a subsampling approach where equal numbers
of male and female donors were analysed.

The most common Neuropathological Diagnoses and their numbers, age at death, and assigned sex distributions were
depicted (and depicted in Suppl. Fig. 1A). Importantly, we supply sex and gender data for other researchers to study this in
more detail for specific disorders.

Population characteristics This study covers 3,042 brain donors that were processed between 1982 and 2020. 1,695 were female, 1,347 were male. The
average age was 74.61 (+/- 13.45). Donors could no clinical or neuropathological indication of brain disorder(n=445),
Alzheimer's Disease (n=720), Frontotemporal Dementia (n=220), Multiple Sclerosis (n=259), Parkinson's Disease (n=134), or
one of the many other brain disorders described in the manuscript. For an overview of all diagnoses, please see the
Supplementary Tables.

Recruitment
All adult citizens of the Netherlands can register to become donors in accordance with NBB procedures which are in full
compliance with Dutch and European law. All NBB donors provided informed consent for their tissue and their data to be
used for research purposes.
We have identified the following potential sources for selection bias:
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- We anticipate that there is an education bias within the NBB cohort, with a higher average education level of the NBB
donors when compared to the general population. This could impact the results since a higher education level is correlated
with a higher life expectancy and lower rates of cognitive decline.

- We also anticipate that individuals in our cohort suffer from brain diseases more frequently than expected, as patients
suffering from brain diseases tend to be more willing to participate in fundamental research than individuals without a
history of brain pathology.

- This brain autopsy cohort almost solely consists of individuals with Dutch/Caucasian background, potentially limiting
generalizability to other ancestries.

Ethics oversight The forms and procedures of the NBB were approved by the Free University Medical Center Medical Ethics Committee
(VUmc METC, Amsterdam, the Netherlands). This study protocol did not warrant any ethics oversight.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size 3,042 Donors were used in the final analyses. Sample size was not predetermined.

Brain autopsies are a highly specialized, time-consuming, and staff-intensive procedures, with many practical limitations (including limited
donor registrations). Hence, we did not do any sample size predetermination, as it was unfeasible to increase the number of brain autopsies
for specific disorders within the confines of this study. Moreover, before the study started it was impossible for us to determine how many
signs and symptoms would be described in the average medical record summaries and how those would differ between disorders. The
number of donors varies per neuropathological diagnosis, with some diagnosis being highly frequent (such as AD, PD, MS). Many other
disorders are very rare, with only one or 2 donors in our autopsy cohort. We have restricted most of our analyses to neuropathological
diagnosis with larger sets (minimal N > 8), with these numbers we are able to pick up on medically relevant information

Data exclusions  Donors were selected based on sufficient clinical and neuropathological information, defined as the presence of more than 500 characters in
the clinical-neuropathological summaries. Donors under the age of 21 were also excluded from the analysis, as there were only a few, and this
small subset was much younger than all other donors, making it difficult to use this group as a ‘control’ group.

Replication When comparing different NLP model architectures, we used the same sets of training data to assess how well each model performed. The
results could theoretically be seen as replicates. We tested 5 model architectures, and each architecture was optimized in 30 trials, meaning
we have 150 replicates. The best performing model was chosen to predict the full corpus of text, meaning that our downstream analyses are
based on an independent experiment.

Randomization  We randomly selected a subset of donors for whom individual sentences from medical record summaries were labeled to generate training
data. Additionally, we randomized the sentences that we used in our model k-fold cross validation approach. Finally, we randomized the

donors that were used in the validation of the Neuropathological Diagnosis prediction model.

Blinding For each sentence, in the labeled dataset, the signs and symptoms that were positively stated were scored blind, without knowledge of donor
medical background or neuropathological status.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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